Specification: Rest Client for MicroProfile Version: 1.1-RC1 Status: Draft Release: April 17, 2018 Copyright (c) 2017 Contributors to the Eclipse Foundation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
MicroProfile Rest Client Definition Examples
MicroProfile TypeSafe Rest Clients are defined as Java interfaces.
Sample Definitions
public interface MyServiceClient {
@GET
@Path("/greet")
Response greet();
}
This simple API exposes one API call, located at /greet
from the base URL of the client. Invoking this endpoint returns a javax.ws.rs.core.Response
object that represents the raw response from invoking the API. Below is a more comprehensive example of a client.
@Path("/users")
@Produces("application/json")
@Consumes("application/json")
public interface UsersClient {
@OPTIONS
Response options();
@HEAD
Response head();
@GET
List<User> getUsers();
@GET
@Path("/{userId}")
User getUser(@PathParam("userId") String userId);
@HEAD
@Path("/{userId}")
Response headUser(@PathParam("userId") String userId);
@POST
Response createUser(@HeaderParam("Authorization") String authorization, User user);
@PUT
@Path("/{userId}")
Response updateUser(@BeanParam PutUser putUser, User user);
@DELETE
@Path("/{userId}")
Response deleteUser(@CookieParam("AuthToken") String authorization, @PathParam("userId") String userId);
}
public class PutUser {
@HeaderParam("Authorization")
private String authorization;
@PathParam("userId")
private String userId;
// getters, setters, constructors omitted
}
All built in HTTP methods are supported by the client API. Likewise, all base parameter types (query, cookie, matrix, path, form and bean) are supported. If you only need to inspect the body, you can provide a POJO can be processed by the underlying MessageBodyReader
or MessageBodyWriter
. Otherwise, you can receive the entire Response
object for parsing the body and header information from the server invocation.
Invalid Client Interface Examples
Invalid client interfaces will result in a RestClientDefinitionException (which may be wrapped in a DefinitionException
if using CDI). Invalid interfaces can include:
-
Using multiple HTTP method annotations on the same method
A client interface method may contain, at most, one HTTP method annotation (such as javax.ws.rs.GET
, javax.ws.rs.PUT
, javax.ws.rs.OPTIONS
, etc.). If a method is annotated with more than one HTTP method, the implementation must throw a RestClientDefinitionException
.
public interface MultipleVerbsClient {
@GET
@DELETE
Response ambiguousClientMethod()
}
-
Invalid URI templates
A client interface that accepts parameters based on the URI path must ensure that the path parameter is defined correctly in the @Path
annotation. For example:
@Path("/somePath/{someParam}")
public interface GoodInterfaceOne {
@DELETE
public Response deleteEntry(@PathParam("someParam") String entryNameToDelete);
}
@Path("/someOtherPath")
public interface GoodInterfaceTwo {
@HEAD
@Path("/{someOtherParam}")
public Response quickCheck(@PathParam("someOtherParam") String entryNameToCheck);
}
Both of these interfaces show valid usage of the @PathParam
annotation. In GoodInterfaceOne
, the URI template is specified at the class-level @Path
annotation; in GoodInterfaceTwo
, the template is specified at the method-level.
Implementations must throw a RestClientDefinitionException if a @Path
annotation specifies an unresolved URI template or if a @PathParam
annotations specifies a template that is not specified in a @Path
annotation on the enclosing method or interface. For example, the following three interfaces will result in a RestClientDefinitionException:
@Path("/somePath/{someParam}")
public interface BadInterfaceOne {
@DELETE
public Response deleteEntry();
}
@Path("/someOtherPath")
public interface BadInterfaceTwo {
@HEAD
@Path("/abc")
public Response quickCheck(@PathParam("someOtherParam") String entryNameToCheck);
}
@Path("/yetAnotherPath")
public interface BadInterfaceThree {
@GET
@Path("/{someOtherParam}")
public Response quickCheck(@PathParam("notTheSameParam") String entryNameToCheck);
}
BadInterfaceOne
declares a URI template named "someParam" but the deleteEntry
method does not specify a @PathParam("someParam")
annotation.
BadInterfaceTwo
does not declare a URI template, but the quickCheck
method specifies a @PathParam
annotation on a parameter.
BadInterfaceThree
has a mismatch. The @Path
annotation declares a URI template named "someOtherParam" but the @PathParam
annotation specifies a template named "notTheSameParam".
All three interfaces will result in a RestClientDefinitionException.
MicroProfile Rest Client Programmatic Lookup
Type Safe Rest Clients support both programmatic look up and CDI injection approaches for usage. An implementation of MicroProfile Rest Client is expected to support both use cases.
Sample Builder Usage
public class SomeService {
public Response doWorkAgainstApi(URI apiUri, ApiModel apiModel) {
RemoteApi remoteApi = RestClientBuilder.newBuilder()
.baseUri(apiUri)
.build(RemoteApi.class);
return remoteApi.execute(apiModel);
}
}
Specifying the baseUri
is the URL to the remote service. The build
method takes an interface that defines one or more API methods to be invoked, returning back an instance of that interface that can be used to perform API calls.
MicroProfile Rest Client Provider Registration
The RestClientBuilder interface extends the Configurable
interface from JAX-RS, allowing a user to register custom providers while its being built. The behavior of the providers supported is defined by the JAX-RS Client API specification. Below is a list of provider types expected to be supported by an implementation:
ClientResponseFilter
Filters of type ClientResponseFilter
are invoked in order when a response is received from a remote service.
ClientRequestFilter
Filters of type ClientRequestFilter
are invoked in order when a request is made to a remote service.
MessageBodyReader
The MessageBodyReader
interface defined by JAX-RS allows the entity to be read from the API response after invocation.
MessageBodyWriter
The MessageBodyWriter
interface defined by JAX-RS allows a request body to be written in the request for @POST
, @PUT
operations, as well as other HTTP methods that support bodies.
ParamConverter
The ParamConverter
interface defined by JAX-RS allows a parameter in a resource method to be converted to a format to be used in a request or a response.
ReaderInterceptor
The ReaderInterceptor
interface is a listener for when a read occurs against the response received from a remote service call.
WriterInterceptor
The WriterInterceptor
interface is a listener for when a write occurs to the stream to be sent on the remote service invocation.
ResponseExceptionMapper
The ResponseExceptionMapper
is specific to MicroProfile Rest Client. This mapper will take a Response
object retrieved via an invocation of a client and convert it to a Throwable
, if applicable. The runtime should scan all of the registered mappers, sort them ascending based on getPriority()
, find the ones that can handle the given status code and response headers, and invoke them. The first one discovered where toThrowable
returns a non-null Throwable
that can be thrown given the client method’s signature will be thrown by the runtime.
How to Implement ResponseExceptionMapper
The specification provides default methods for getPriority()
and handles(int status, MultivaluedMap<String,Object> headers)
methods. Priority is meant to be derived via a @Priority
annotation added to the ResponseExceptionMapper
implementation. The runtime will sort ascending, taking the one with the lowest numeric value first to check if it can handle the Response
object based on it’s status code and headers. The usage of ascending sorting is done to be consistent with JAX-RS behavior.
Likewise, the handles
method by default will handle any response status code >= 400. You may override this behavior if you so choose to handle other response codes (both a smaller ranger and a larger range are expected) or base the decision on the response headers.
The toThrowable(Response)
method actually does the conversion work. This method should not raise any Throwable
, instead just return a Throwable
if it can. This method may return null
if no throwable should be raised. If this method returns a non-null throwable that is a sub-class of RuntimeException or Error (i.e. unchecked throwables), then this exception will be thrown to the client. Otherwise, the (checked) exception will only be thrown to the client if the client method declares that it throws that type of exception (or a super-class). For example, assume there is a client interface like this:
@Path("/")
public interface SomeService {
@GET
public String get() throws SomeException;
@PUT
public String put(String someValue);
}
and assume that the following ResponseExceptionMapper has been registered:
public class MyResponseExceptionMapper implements ResponseExceptionMapper<SomeException> {
@Override
public SomeException toThrowable(Response response) {
return new SomeException();
}
}
In this case, if the get
method results in an exception (response status code of 400 or higher), SomeException will be thrown. If the put
method results in an exception, SomeException will not be thrown because the method does not declare that it throws SomeException. If another ResponseExceptionMapper (such as the default mapper, see below) is registered that returns a subclass of RuntimeException or Error, then that exception will be thrown.
Any methods that read the response body as a stream must ensure that they reset the stream.
Provider Declaration
In addition to defining providers via the client definition, interfaces may use the @RegisterProvider
annotation to define classes to be registered as providers in addition to providers registered via the RestClientBuilder
Providers may also be registered by implementing the RestClientBuilderListener
interface. This interface is intended as an SPI to allow global provider registration. The implementation of this interface must be specified in a META-INF/services/org.eclipse.microprofile.rest.client.spi.RestClientBuilderListener
file, following the service loader pattern.
Provider Priority
Providers may be registered via both annotations and the builder pattern. Providers registered via a builder will take precedence over the @RegisterProvider
annotation. The @RegisterProvider
annotation takes precedence over the @Priority
annotation on the class.
Provider priorities can be overridden using the various register
methods on Configurable
, which can take a provider class, provider instance as well as priority and mappings of those priorities.
Feature Registration
If the type of provider registered is a Feature
, then the priority set by that Feature
will be a part of the builder as well. Implementations must maintain the overall priority of registered providers, regardless of how they are registered. A Feature
will be used to register additional providers at runtime, and may be registered via @RegisterProvider
, configuration or via RestClientBuilder
. A Feature
will be executed immediately, as a result its priority is not taken into account (features are always executed).
Automatic Provider Registration
Implementations may provide any number of providers registered automatically, but the following providers must be registered by the runtime.
JSON-P Provider
When an interface is registered that contains:
-
@Produces("*/json")
or -
@Consumes("*/json")
or -
a method that declares input or output of type
javax.json.JsonValue
or any subclass therein
Then a JSON-P MessageBodyReader
and MessageBodyWriter
will be registered automatically by the implementation. This is in alignment with the JAX-RS 2.0 specification. The provider registered will have a priority of Integer.MAX_VALUE
, allowing a user to register a custom provider to be used instead.
Default Message Body Readers and Writers
For the following types, and any media type, the runtime must support `MessageBodyReader`s and `MessageBodyWriter`s being automatically registered.
-
byte[]
-
String
-
InputStream
-
Reader
-
File
Default ResponseExceptionMapper
Each implementation will provide out of the box a ResponseExceptionMapper
implementation that will map the response into a WebApplicationException
whenever the response status code is >= 400. It has a priority of Integer.MAX_VALUE
. It is meant to be used as a fall back whenever an error is encountered. This mapper will be registered by default to all client interfaces.
This behavior can be disabled by adding a configuration property microprofile.rest.client.disable.default.mapper
with value true
that will be resolved as a boolean
via MicroProfile Config.
It can also be disabled on a per client basis by using the same property when building the client, RestClientBuilder.newBuilder().property("microprofile.rest.client.disable.default.mapper",true)
MicroProfile Rest Client CDI Support
Rest Client interfaces may be injected as CDI beans. The runtime must create a CDI bean for each interface annotated with RegisterRestClient
. The bean created will include a qualifier @RestClient
to differentiate the use as an API call against any other beans registered of the same type. Based on the rules of how CDI resolves bean, you are only required to use the qualifier if you have multiple beans of the same type. Any injection point or programmatic look up that uses the qualifier RestClient
is expected to be resolved by the MicroProfile Rest Client runtime. Below is an example of said interface, with its matching injection point:
package com.mycompany.remoteServices;
@RegisterRestClient
public interface MyServiceClient {
@GET
@Path("/greet")
Response greet();
}
@ApplicationScoped
public class MyService {
@Inject
@RestClient
private MyServiceClient client;
}
Likewise, a user can perform programmatic look up of the interface. Here is one example, but any CDI look up should work:
@ApplicationScoped
public class MyService {
public void execute() {
MyServiceClient client = CDI.current().select(MyServiceClient.class, RestClient.LITERAL).get();
}
}
The qualifier is used to differentiate use cases of the interface that are managed by this runtime, versus use cases that may be managed by other runtimes.
Interfaces are assumed to have a scope of @Dependent
unless there is another scope defined on the interface. Implementations are expected to support all of the built in scopes for a bean. Support for custom registered scopes should work, but is not guaranteed.
Support for MicroProfile Config
For CDI defined interfaces, it is possible to use MicroProfile Config properties to define additional behaviors of the rest interface. Assuming this interface:
package com.mycompany.remoteServices;
public interface MyServiceClient {
@GET
@Path("/greet")
Response greet();
}
The values of the following properties will be provided via MicroProfile Config:
-
com.mycompany.remoteServices.MyServiceClient/mp-rest/url
: The base URL to use for this service, the equivalent of thebaseUrl
method. This property (or */mp-rest/uri) is considered required, however implementations may have other ways to define these URLs/URIs. -
com.mycompany.remoteServices.MyServiceClient/mp-rest/uri
: The base URI to use for this service, the equivalent of thebaseUri
method. This property (or */mp-rest/url) is considered required, however implementations may have other ways to define these URLs/URIs. -
com.mycompany.remoteServices.MyServiceClient/mp-rest/scope
: The fully qualified classname to a CDI scope to use for injection, defaults tojavax.enterprise.context.Dependent
as mentioned above. -
com.mycompany.remoteServices.MyServiceClient/mp-rest/providers
: A comma separated list of fully-qualified provider classnames to include in the client, the equivalent of theregister
method or the@RegisterProvider
annotation. -
com.mycompany.remoteServices.MyServiceClient/mp-rest/providers/com.mycompany.MyProvider/priority
will override the priority of the provider for this interface.
Implementations may support other custom properties registered in similar fashions or other ways.
The url
property must resolve to a value that can be parsed by the URL
converter required by the MicroProfile Config spec. Likewise, the uri
property must resolve to a value that can be parsed by the URI
converter.
If both the url
and uri
properties are declared, then the uri
property will take precedence.
The providers
property is not aggregated, the value will be read from the highest property ConfigSource
MicroProfile Rest Client Asynchronous Support
It is possible for Rest Client interface methods to be declared asynchronous. This allows the thread invoking the interface method to proceed while the RESTful request occurs on another thread.
Asynchronous Methods
A method is considered to be asynchronous if the method’s return type is java.util.concurrent.CompletionStage
.
For example, the following methods would be declared asynchronous:
public interface MyAsyncClient {
@GET
@Path("/one")
CompletionStage<Response> get();
@POST
@Path("/two")
CompletionStage<String> post(String entity);
}
ExecutorService
By default, the MicroProfile Rest Client implementation can determine how to implement the asynchronous request. The primary requirement for the implementation is that the response from the remote server should be handled on a different thread than the thread invoking the asynchronous method. Providers on the outbound client request chain (such as `ClientRequestFilter`s, `MessageBodyWriter`s, `WriterInterceptor`s, etc.) may be executed on either thread.
Callers may override the default implementation by providing their own ExecutorService
via the RestClientBuilder.executorService(ExecutorService)
method.
The implementation must use the ExecutorService
provided for all asynchronous methods on any interface built via the RestClientBuilder
.
AsyncInvocationInterceptors
There may be cases where it is necessary for client application code or runtime components to be notified when control of the client request/response has flowed from one thread to another.
This can be accomplished by registering an implementation of the AsyncInvocationInterceptorFactory provider interface.
MP Rest Client implementations must invoke the newInterceptor
method of each registered factory provider prior to switching thread of execution on async method requests.
That method will return an instance of AsyncInvocationInterceptor
- the MP Rest Client implementation must then invoke the prepareContext
method while still executing on the thread that invoked the async method.
After swapping threads, but before invoking further providers or returning control back to the async method caller, the MP Rest Client implementation must invoke the applyContext
method on the new async thread that will complete the request/response.
The following example shows how the AsyncInvocationInterceptorFactory provider and associated AsyncInvocationInterceptor interface could be used to propagate a ThreadLocal
value from the originating thread to async thread:
public class MyFactory implements AsyncInvocationInterceptorFactory {
public AsyncInvocationInterceptor newInterceptor() {
return new MyInterceptor();
}
}
public class MyInterceptor implements AsyncInvocationInterceptor {
// This field is temporary storage to facilitate copying a ThreadLocal value
// from the originating thread to the new async thread.
private volatile String someValue;
public void prepareContext() {
someValue = SomeClass.getValueFromThreadLocal();
}
public void applyContext() {
SomeClass.setValueIntoThreadLocal(someValue);
}
}
@RegisterProvider(MyFactory.class)
public interface MyAsyncClient {...}
Release Notes for MicroProfile Rest CLient 1.1
Changes since 1.0:
-
New
baseUri
method onRestClientBuilder
.
Release Notes for MicroProfile Rest Client 1.0
MicroProfile Rest Client Spec PDF MicroProfile Rest Client Spec HTML MicroProfile Rest Client Spec Javadocs
Key features:
-
Built in alignment to other MicroProfile Specs - automatic registration of JSON provider, CDI support for injecting clients, fully configurable clients via MicroProfile Config
-
Can map JAX-RS
Response
objects into `Exception`s to be handled by your client code -
Fully declarative annotation driven configuration, with supported builder patterns
-
Closely aligned to JAX-RS with configuration and behavior based on the JAX-RS
Client
object
To get started, simply add this dependency to your project, assuming you have an implementation available:
<dependency>
<groupId>org.eclipse.microprofile.rest.client</groupId>
<artifactId>microprofile-rest-client-api</artifactId>
<version>1.0</version>
<scope>provided</scope>
</dependency>
And then programmatically create an interface:
public interface SimpleGetApi {
@GET
Response executeGet();
}
// in your client code
SimpleGetApi simpleGetApi = RestClientBuilder.newBuilder()
.baseUri(getApplicationUri())
.build(SimpleGetApi.class);
or you can use CDI to inject it:
@Path("/")
@Dependent
@RegisterRestClient
public interface SimpleGetApi {
@GET
Response executeGet();
}
// in your client code
@Inject
private SimpleGetApi simpleGetApi
// in your config source
com.mycompany.myapp.client.SimpleGetApi/mp-rest/url=http://microprofile.io